Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate
نویسنده
چکیده
Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did affect the crystalline nature of cellulose. The percentage of crystallite size was found increased significantly in treated cellulose by 159.83%, as compared to control sample. This showed that biofield treatment was changing the crystalline nature of treated cellulose. However treated cellulose acetate showed a reduction in crystallite size (-17.38%) as compared to control sample. Differential Scanning Calorimetry (DSC) of treated cellulose showed no improvement in melting temperature as compared to control sample. Contrarily cellulose acetate showed significant improvement in melting temperature peak at 351.91oC as compared to control (344oC) polymer. Moreover percentage change in latent heat of fusion (∆H) was calculated from the DSC thermogram of both treated and control polymers. A significant increase in percentage ∆H of both treated cellulose (59.09%) and cellulose acetate (105.79%) polymers indicated that biofield treatment enhanced the thermal stability of the treated polymers. CHNSO analysis revealed a significant change in percentage hydrogen and oxygen of treated cellulose (%H-17.77, %O-16.89) and cellulose acetate (%H-5.67, %O-13.41). Though minimal change was observed in carbon percentage of both treated cellulose (0.29%) and cellulose acetate (0.39%) polymers as compared to their respective control samples. Thermo gravimetric analysis and Differential thermo gravimetric (TGA-DTG) analysis of treated cellulose acetate (353oC) showed increased maximum thermal decomposition temperature as compared to control polymer (351oC). This showed the higher thermal stability of the treated cellulose acetate polymer; although the maximum thermal decomposition temperature of treated cellulose (248oC) was decreased as compared to control cellulose (321oC). These outcomes confirmed that biofield treatment has changed the physicochemical properties of the cellulose polymers. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate
منابع مشابه
Thermal and Magnetic Characteristics of Cellulose Acetate- Fe3O4
Fe3O4 nanoparticles were synthesizedviaa simple chemical reaction between FeCl2.4H2O and Fe(NO3)3.9H2O under nitrogen atmosphere at room temperature, and then nanoparticles were added to cellulose acetate (CA) polymer. The influence of nanoparticles on the thermal properties of CA polymeric matrix was studied using the...
متن کاملAntibacterial Activity and Conductivity Properties of Nanocomposites based on Cellulose Acetate Nanofibers and Copper Nanoparticles
in this work, nanocomposites comprising copper nanoparticle in cellulose acetate (CA)matrices have been prepared. In this manner, Copper nanoparticles prepared by its saltreduced by sodium borohydride at various concentration. Then this nanoparticle solution wasmixed with polymer solution and electrospun by electrospinning device. The abovenanocomposite has been successfully detected by SEM, ED...
متن کاملSynthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH)2-MWCNT Nanocomposite
Mg(OH)2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant) and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant) on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of M...
متن کاملCharacterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
Cellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and treated). The control group remained as untrea...
متن کاملThe Potentials and Applications of Cellulose Acetate in biosensor technology
The interest in cellulose and its derivatives has been exponentially increasing due to its excellent thermal stability, biocompatibility, chemical persistence and biodegradability. Among various cellulose derivatives, cellulose acetate (CA) has been applied in many applications including sensor systems, drug delivery systems, separation membrane, and tissue engineering. Recently, the electrospu...
متن کامل